MIT develops automatic building mapping system

MIT develops automatic building mapping system

SHARE

US: Researchers from Massachusetts Institute of Technology (MIT) have developed a wearable sensor system that automatically creates a digital map of the environment through which the wearer is moving. The prototype system, described in a paper slated for the Intelligent Robots and Systems conference in Portugal next month, is envisioned as a tool to help emergency responders coordinate disaster response.

In experiments conducted on the MIT campus, a graduate student wearing the sensor system wandered the halls, and the sensors wirelessly relayed data to a laptop in a distant conference room. Observers in the conference room were able to track the student’s progress on a map that sprang into being as he moved.

Connected to the array of sensors is a handheld pushbutton device that the wearer can use to annotate the map. In the prototype system, pressing the button simply designates a particular location as a point of interest. But the researchers envision that emergency responders could use a similar system to add voice or text tags to the map — indicating, say, structural damage or a toxic spill.

“The operational scenario that was envisioned for this was a hazmat situation where people are suited up with the full suit, and they go in and explore an environment,” said Maurice Fallon, a research scientist in MIT’s Computer Science and Artificial Intelligence Laboratory, and lead author on the new paper. “The current approach would be to textually summarize what they had seen afterward — ‘I went into this room on the left, I saw this, I went into the next room,’ and so on. We want to try to automate that.”

Fallon is joined on the paper by professors John Leonard and Seth Teller, of, respectively, the departments of Mechanical Engineering and of Electrical Engineering and Computer Science (EECS), and EECS grad students Hordur Johannsson and Jonathan Brookshire.

One of the sensors that the system uses is a laser rangefinder, which sweeps a laser beam around a 270-degree arc and measures the time that it takes the light pulses to return. If the rangefinder is level, it can provide very accurate information about the distance of the nearest walls, but a walking human jostles it much more than a rolling robot does. Similarly, sensors in a robot’s wheels can provide accurate information about its physical orientation and the distances it covers, but that’s missing with humans. And as emergency workers responding to a disaster might have to move among several floors of a building, the system also has to recognize changes in altitude, so it doesn’t inadvertently overlay the map of one floor with information about a different one.

So in addition to the rangefinder, the researchers also equipped their sensor platform with a cluster of accelerometers and gyroscopes, a camera, and, in one group of experiments, a barometer (changes in air pressure proved to be a surprisingly good indicator of floor transitions).

Source: MIT