Advertisement
Advertisement
​ ​ ​ ​ ​ ​
Advertisement
​ ​ ​
Home Articles Application Agriculture Irrigation

GIS based diagnostic analysis of irrigation system performance assessment of Bhadra command area at disaggregated level
Published in : (Map India 2002)




R. Vidhya
Institute of Remote Sensing, Anna University, Chennai
Vidhya@annauniv.edu

Dr. M. Karmegam
Center for Water Resources,Anna University,Chennai

Dr. K. Venugopal
Institute of Remote Sensing, Anna University, Chennai


Abstract
Satellite remote sensing (SRS) and geographic information (GIS) techniques for improved water management in canal irrigation schemes. The Bhadra command area was brought under NWMP(National water management project) to improve agricultural productivity and farm income through a predictable, equitable and reliable irrigation service. Satellite remote sensing technique has been applied to historic and 1995 Rabi season data by National Remote Sensing Agency to generate primary data on irrigated area, cropping pattern and crop yield at disaggregated level and to access the improvement in agricultural productivity and water management after MWMP implementation. The GIS technique helps in integration of satellite and ground information to evaluate the system performance and to diagnose the inequality in the performance to aid in improving the water management.

The primary objective is to diagnose the factors for poor performance of selected distributaries using satellite data and s ground data collected by specially designed sample survey and to improve performance by prescribing corrective measures. The distributaries 9A, 12 and 15 of Malabennur division of Bhadra project in Karnataka state covering about 2350 ha area, is considered for this study. The performance of 12th distributory is good whereas the other two were poor performing. Hence to find the causative factors for poor performance were studied in comparison with a good performing area.

The satellite inputs (crop map and condition map) geometrically corrected wit respect to topographic maps are generated with ARIES and EASI/PACE software and transported to PAMAP environment. The revenue survey map in 1:8000 scale is photographically reduced to 1:16000 scale, digitized, edited and corrected with respect to top map and satellite imagery. Conducting sample survey designed for this purpose and compiled in Dbase collects the ground data for the analysis of identified problem distributaries. The system performance of the problem distributaries are characterized based on satellite reported acreage and yield gaps and analyzed with reference to ground sample survey data. The diagnostic analysis of the problem distributaries is carried out on the aspects of irrigation, agriculture and socio-economic. A questionnaire to this effect was designed and the information collected from the ground was organized and analyzed in the GIS. The causative factors are identified and prioritized for corrective measures to ensure better performance within the framework of NWMP. The analysis is performed by comparing the good with the bad performing distributaries.

The physical and socio-economic data were interpolated with different considerations and methods and analyzed. A Conjunctive analysis of remote sensing- derived, irrigation, agricultural and socio-economic data was attempted. Various causative factors pertaining to all these three activities were identified, ranging from poor physical condition, improper fertilizer consumption to poor interaction between the officials and the farmers. Here GIS served as a platform to analyze the effect of each component of the system based on the results.

Need for Irrigation Water Management
Irrigation water use is by far the largest use of water by mankind worldwide. The ever-increasing water demand compared with the depleting water resources warrants refined water use practices in irrigated agriculture to attain improved socioeconomic benefits. In the past years the improvement in the irrigation system concentrated in the hardware component namely the physical aspects like structures but limited on the software part namely water usage for agricultural purpose.

Water is not a free commodity. With increasing standards of living and fast growing population, the available water resources may not be able to meet various demands of mankind. It becomes necessary to put the available resource more effectively for more benefits. It is unto the managers of water resources to devise ways and means of optimally using resources to meet the ever-increasing demand. The aim of efficient irrigation water management or precisely, maximum yield with available water. A good management, proper and timely application of water may result in better yield and reduction in drainage problems.






Fig 1: Match between water release and agriculture operations


12345

Share and Discuss: 


Copyright © 2014. All rights reserved Geospatial Media and Communications Pvt Ltd.